AL/2	2016/01/E-I	All Dichts Do	-	1 -				_
MOR Bicorgal Tamil S Bicorgal MORA Bicorgal Tamil S	A E-TAMILS 2018 amil Stu @meai usinemasis Students, Faculty of Engineer kep di, polip unemainei, ikong A E-TAMILS 2018 Tamil Stu (@meail usinemashagan flungd) Students, Faculty of Engineer	Lugi Ali Kignis Ke to the former of the for	servea j லைக்கழக ம.த உயர் னோடிப்		Students, F I Students, F I Students, F I Students, F	2018 Tamil Singletts 3-012-5 500 10 acity of Engineering 1055 50 1055 5	Faculty of Engineering, University of Moratuv DI 5001 01 1 5011 aug dL. gußip university University of Moratuwa MORA E-TAMILS 20 011, Junip Anaseau/aai, Rongti, Gemault university Faculty of Engineering, University of Moratu- ault university of Moratuwa MORA E-TAMILS 20 University of Moratuwa MORA E-TAMILS 20	wə maii Xifan Xifa
	ക്ക് ബീப் പെ General Cer	ாதுத் தராதரப் tificate of Ed	பத்திர(உ ucation	فستر (Adv	தர) (/.Lev	ρன்னோடிப் el) Pilot E	ப் பரீட்சை - 2016 xamination - 2016	
	വെണ്ട്രികരിവാം Physics	I I	01	E	Ι	(@ŋ Tw	ண்டு மணித்தியாலம் o hours]
\bigcap	Important :							
	This paper contained	ains 50 questions in	12 pages.					
	Answer all ques	stions.						
	Write your inde	ex number in the sp	ace provide	ed in the	e answ	er sheet.		
*	• Choose the corr	rect or most approp	oriate answ	er from	the an	swers number	ed (1) , (2) , (3) , (4) , (5) for	
	each question fr	om 1 to 50 and put	a cross (X)	accordi	ing to t	he instruction	s given in the answer sheet	•
		t	Jse of calcu	lator is	s prohi	bited.		
\square			(g =	= 10 N K	.g)			_
1.	The dimension of (1) MLT ⁻¹	of rate of change of r (2) ML ⁻¹ T ⁻¹	momentum (3) ML	is. .T ⁻²	(4	4) $ML^{2}T^{-2}$	(5) $ML^{-2}T^{-3}$	
2.	A micrometer so	crew guage is used t	o measure	the diar	neter o	f a copper rod	. The reading of this instrum	ent
	when measuring	the diameter is sho	own in the f	igure 1	. The r	od is removed	and the jaws of this instrum	ent
	are made to coin	cide and the reading	g is taken as	s shown	n in the	figure 2.		
						20 15 0 10		
	The diameter	Figure -1				Figure	-2	
	(1) 1.90mm	(2) 2.45mm	(3) 2.59	mm	(4	4) 2.73mm	(5) 5.90mm	
3.	The noise level a	at a work site is 90d	B . It is inst	ructed t	to redu	ce the noise le	vel to a comfortable noise le	vel
	as 70dB . By how	v much, the intensit	y should be	reduce	d?			
	(1) 1000 Wm^{-2}	(2) 100 Wm^{-2}	(3) 10 V	Wm ⁻²	(4	4) 99x10 ⁻⁵ Wn	n^{-2} (5) 9x10 ⁻⁵ Wm ⁻²	
4.	Which of the fe	ollowing correctly	shows the	shape	of a li	quid making	a contact angle of 60° with	h a
	spherical glass v	ressel?						
	(1)			(3)				

(2)

(4)

(5)

5. A force F is applied on an object moving freely. At a particular moment the velocity of the object is V and its acceleration is a. The quantities that should be in the same direction. (1) a and V (2) a and F (3) V and F (4) all V, F, a (5) None of the above should be in a same direction. 6. A ceiling fan performs 36 rotations until it reduces its angular velocity to 50% of its initial. The number of further rotations it would perform until it comes to rest (its angular deceleration is uniform) (1) 48 (2) 36 (3) 24 (4) 18 (5) 12 7. The kinetic energy of a vehicle of mass 1000kg is 4.5x10 ³ J. It is made to come to rest by applying a constant opposing force of doolow. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. Image: the figure shows a nut is being tightened by a spanner. (1) 37m (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 8Nm (2) 42Nm (3) 50Nm (4) 6.00ms ² <t< th=""><th>AL/2</th><th>2016/01/E-I</th><th></th><th>- 2 -</th><th></th><th></th></t<>	AL/2	2016/01/E-I		- 2 -		
(1) a and V (2) a and F (3) V and F (4) all V, F, a (5) None of the above should be in a same direction. (6) A ceiling fan performs 36 rotations until it reduces its angular velocity to 50% of its initial. The number of further rotations it would perform until it comes to rest (its angular deceleration is uniform) (1) 48 (2) 36 (3) 24 (4) 18 (5) 12 7. The kinetic energy of a vehicle of mass 1000kg is 4.5x10 ³ J. It is made to come to rest by applying a constant opposing force of 6000N. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. F=200N A force F is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Mm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. $\int_{V=1}^{V_{12}} \int_{V=1}^{V_{12}} \int_{V=1}^$	5.	A force F is ap its acceleration	oplied on an object m is a . The quantities	noving freely. At a that should be in	a particular moment the same direction.	the velocity of the object is \mathbf{V} and
 (5) None of the above should be in a same direction. 6. A ceiling fan performs 36 rotations until it reduces its angular velocity to 50% of its initial. The number of further rotations it would perform until it comes to rest (its angular deceleration is uniform) (1) 48 (2) 36 (3) 24 (4) 18 (5) 12 7. The kinetic energy of a vehicle of mass 1000kg is 4.5x10³. It is made to come to rest by applying a constant opposing force of 6000N. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. <i>Q</i> 205m <i>P</i> = 200N A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 0.60ms² (2) 2.36ms² (3) 5.83ms² (4) 6.00ms² (5) 7.00ms² 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0⁰C. It is heated by a heater of power <i>P</i> for a time <i>t</i>. If the latent heat of fusion of ice is <i>L</i>, the mass of the remaining block kork of readire time <i>t</i> is 		(1) \mathbf{a} and \mathbf{V}	(2) a and	L Fr	(3) V and F	(4) all V , F , a
 6. A ceiling fan performs 36 rotations until it reduces its angular velocity to 50% of its initial. The number of further rotations it would perform until it comes to rest (its angular deceleration is uniform) (1) 48 (2) 36 (3) 24 (4) 18 (5) 12 7. The kinetic energy of a vehicle of mass 1000kg is 4.5x10⁵J. It is made to come to rest by applying a constant opposing force of 6000N. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. (1) a force F is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 0.60ms² (2) 2.36ms² (3) 5.83ms² (4) 6.00ms² (5) 7.00ms² (1) 0.60ms² (2) 2.36ms² (3) 5.83ms² (4) 6.00ms² (5) 7.00ms² (2) <i>M</i> + <i>Pt</i> + <i>L</i> (3) <i>Pt</i> (4) <i>Pt</i> (4) <i>Pt</i> (5) <i>R</i> 		(5) None of the	above should be in a	a same direction.		
further rotations it would perform until it comes to rest (its angular deceleration is uniform) (1) 48 (2) 36 (3) 24 (4) 18 (5) 12 7. The kinetic energy of a vehicle of mass 1000kg is 4.5x10 ⁵ J. It is made to come to rest by applying a constant opposing force of 6000N. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. V V v v v v v v v v	6.	A ceiling fan p	performs 36 rotations	until it reduces it	ts angular velocity to	50% of its initial. The number of
(1) 48 (2) 36 (3) 24 (4) 18 (5) 12 7. The kinetic energy of a vehicle of mass 1000kg is 4.5×10^5 J. It is made to come to rest by applying a constant opposing force of 6000N. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. $\int_{V=0}^{V_{2}} \int_{V=0}^{V_{2}} \int_{V=$		further rotation	ns it would perform u	intil it comes to re	est (its angular decele	ration is uniform)
 7. The kinetic energy of a vehicle of mass 1000kg is 4.5x10⁵J. It is made to come to rest by applying a constant opposing force of 6000N. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. (1) 40 (2) 42m (3) 50m (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 0.60ms² (2) 2.36ms² (3) 5.83ms² (4) 6.00ms² (5) 7.00ms² 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0¹⁰C. It is heated by a heater of power <i>P</i> for a time <i>t</i>. If the latent heat of fusion of ice is <i>L</i>, the mass of the remaining block of ice after time <i>t</i> is (1)<i>M</i>- <i>P</i>/<i>L</i> (2)<i>M</i>+ <i>Pt</i> + <i>L</i> (3) <i>P</i>/<i>L</i> (4) <i>M</i>/<i>Pt</i> (5)<i>M</i>-<i>PL</i>/<i>L</i> 		(1) 48	(2) 36	(3) 24	(4) 18	(5) 12
constant opposing force of 6000N. The distance travelled by the vehicle until it stops is (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. $ \begin{array}{c} \hline & & \\$	7.	The kinetic en	ergy of a vehicle o	f mass 1000kg is	s $4.5 \times 10^5 $ J. It is made	e to come to rest by applying a
 (1) 37m (2) 75m (3) 150m (4) 300m (5) 750m 8. The figure shows a nut is being tightened by a spanner. a force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. b b supplied at the newton balances and the angular measurements, find the initial vertical acceleration of the mass when the man takes out his hand suddenly (1) 0.60ms⁻² (2) 2.36ms⁻² (3) 5.83ms⁻² (4) 6.00ms⁻² (5) 7.00ms⁻² 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0⁹C. It is heated by a heater of power <i>P</i> for a time <i>t</i>. If the latent heat of fusion of ice is <i>L</i>, the mass of the remaining block of ice after time <i>t</i> is (1) <i>M</i>- <i>H</i>/<i>L</i> (2)<i>M</i>+<i>Pt</i>+<i>L</i> (3) <i>H</i>/<i>L</i> (4) <i>H</i>/<i>Pt</i> (5)<i>M</i>-<i>H</i>/<i>L</i>		constant oppos	ing force of 6000N.	The distance trave	elled by the vehicle un	ntil it stops is
 8. The figure shows a nut is being tightened by a spanner. a force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. b b c c c c c c c c c d c c c d c c d c d d d d d d d d d d		(1) 37m	(2) 75m	(3) 150m	(4) 300m	(5) 750m
A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (1) 1250Nm (5) 5000N (1) 1250Nm (5) 5000N (1) 1250Nm (5) 5000N (1) 1250Nm (1) 1250Nm (5) 5000N (1) 1250Nm (1) 1250Nm (5) 5000N (1) 1250Nm (1) 1250Nm (1) 1250Nm (5) 5000N (1) 1250Nm (1) 1250Nm (5) 5000N (1) 1250Nm (1) 1250Nm (1) 1250Nm (5) 5000N (1) 1250Nm (1) 1250Nm (5) 5000N (1) 1250Nm (1) 1250Nm (1) 1250Nm (2) 2.36ms ² (1) 0.60ms ² (2) 2.36ms ² (1) 0.583ms ² (1) 0.60ms ² (5) 7.00ms ² (1) 0.60ms ² (2) 2.36ms ² (3) 5.83ms ² (4) 6.00ms ² (5) 7.00ms ² (5) 7.00ms ² (1) 0.60ms ² (2) 2.36ms ² (3) 5.83ms ² (4) 6.00ms ² (5) 7.00ms	8.	The figure sho	ws a nut is being tigh	ntened by a spann	er.	
A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (5) The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (5) The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (5) The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 0.00ms ² (2) 2.36ms ² (3) 5.83ms ² (4) 6.00ms ² (5) 7.00ms ² (5) 7.00ms ² (5) An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0 ⁶ C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$		C			1	
A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (6) The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (6) The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 0.060ms ² (2) 2.36ms ² (3) 5.83ms ² (4) 6.00ms ² (5) 7.00ms ² (5) 7.00ms ² (5) An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0°C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{P_{L}}{L}$ (2) $M + Pt + L$ (3) $\frac{P_{L}}{L}$ (4) $\frac{M}{P_{T}}$ (5) $M - \frac{P_{L}}{L}$						
A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (1) 128g which is being born by a hand and two Newton balances. (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N (5) The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. (1) 0.60ms ⁻² (2) 2.36ms ⁻² (3) 5.83ms ⁻² (4) 6.00ms ⁻² (5) 7.00ms ⁻² (1) 0.60ms ⁻² (2) 2.36ms ⁻² (3) 5.83ms ⁻² (4) 6.00ms ⁻² (5) 7.00ms ⁻² (1) 0.60ms ⁻² (2) 2.36ms ⁻² (3) 5.83ms ⁻² (4) 6.00ms ⁻² (5) 7.00ms ⁻²			$\langle \Psi \rangle$ _			
A force <i>F</i> is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances.			0.04 m		ļ t	
F=200N A force F is applied perpendicular to the spanner at a distance of 0.25m from the center of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances.				0.25 m		
 A force <i>P</i> is applied perpendicular to the spanner at a distance of 0.25 m from the echec of the nut. A force of 200N is applied at the moment the nut is tightening fully. The resistive torque in the anticlockwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. 5 6 7 8 8 9 9 8 9 <		Λ force F is an	nlied perpendicular	to the spanner at	F = 200 N a distance of 0.25m fr	$r_{\rm constant}$ the center of the put Λ force
b) 200N is applied at the moment the null is tightening fully. The resistive torque in the anticidekwise direction which prevents the further tightening of the nut is (1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances.		of 200N is on	plied perpendicular	to the spanner at a	a distance of 0.23m m	tive torque in the enticle lavies
(1) 8Nm (2) 42Nm (3) 50Nm (4) 1250Nm (5) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. $\int_{4}^{4} \int_{2}^{7} \int_{0}^{7} \int_{0}^{7} \int_{0}^{5} \int_{0}^{7} \int_{0}^{7} \int_{0}^{5} \int_{0}^{7} \int_{0$		direction which	pred at the moment	t the nut is tighte	nut io	uve torque in the anticiockwise
 (1) 8Nm (2) 42Nm (3) 30Nm (4) 1230Nm (3) 5000N 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. 54321000000000000000000000000000000000000		(1) SN-	(2) 42N	(2) 50N	(4) 1250N	(5) 5000NI
 9. The figure shows a mass of 1.2kg which is being born by a hand and two Newton balances. 5432000000000000000000000000000000000000	0	(1) olnill	(2) 421NIII		(4) 125010111	
Using the readings of the newton balances and the angular measurements, find the initial vertical acceleration of the mass when the man takes out his hand suddenly (1) 0.60ms^{-2} (2) 2.36ms^{-2} (3) 5.83ms^{-2} (4) 6.00ms^{-2} (5) 7.00ms^{-2} 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0° C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$	9.	The figure sno	ws a mass of 1.2 kg v	vnich is being bor	n by a nand and two I	Newton balances.
$\frac{3}{2}$ Weight = $12N$ Using the readings of the newton balances and the angular measurements, find the initial vertical acceleration of the mass when the man takes out his hand suddenly (1) 0.60ms ⁻² (2) 2.36ms ⁻² (3) 5.83ms ⁻² (4) 6.00ms ⁻² (5) 7.00ms ⁻² 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0°C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$			5			
Using the readings of the newton balances and the angular measurements, find the initial vertical acceleration of the mass when the man takes out his hand suddenly (1) 0.60ms^{-2} (2) 2.36ms^{-2} (3) 5.83ms^{-2} (4) 6.00ms^{-2} (5) 7.00ms^{-2} 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0° C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$				32	5	
Using the readings of the newton balances and the angular measurements, find the initial vertical acceleration of the mass when the man takes out his hand suddenly (1) 0.60 ms^{-2} (2) 2.36 ms^{-2} (3) 5.83 ms^{-2} (4) 6.00 ms^{-2} (5) 7.00 ms^{-2} 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0°C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$				1013	234	
$\begin{array}{c} & \qquad $				37° 53°		
Weight = 12N Weight = 12N Using the readings of the newton balances and the angular measurements, find the initial vertical acceleration of the mass when the man takes out his hand suddenly (1) 0.60ms ⁻² (2) 2.36ms ⁻² (3) 5.83ms ⁻² (4) 6.00ms ⁻² (5) 7.00ms ⁻² 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0 ^o C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$					~	
weight = 12NUsing the readings of the newton balances and the angular measurements, find the initial vertical acceleration of the mass when the man takes out his hand suddenly(1) 0.60ms^{-2} (2) 2.36ms^{-2} (3) 5.83ms^{-2} (4) 6.00ms^{-2} (5) 7.00ms^{-2} 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0° C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is $(1)M - \frac{Pt}{L}$ $(2)M + Pt + L$ $(3)\frac{Pt}{L}$ $(4)\frac{M}{Pt}$ $(5)M - \frac{PL}{t}$				Weight = 1		
acceleration of the mass when the man takes out his hand suddenly (1) 0.60 ms^{-2} (2) 2.36 ms^{-2} (3) 5.83 ms^{-2} (4) 6.00 ms^{-2} (5) 7.00 ms^{-2} 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0° C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$		Using the rea	dings of the newto	weight = 1	the angular measure	ements find the initial vertical
(1) 0.60 ms^{-2} (2) 2.36 ms^{-2} (3) 5.83 ms^{-2} (4) 6.00 ms^{-2} (5) 7.00 ms^{-2} 10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0° C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is (1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$		acceleration of	the mass when the r	nan takes out his l	hand suddenly	Anonio, fina die finala vertieur
10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0^{0} C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is $(1)M - \frac{Pt}{L} \qquad (2)M + Pt + L \qquad (3)\frac{Pt}{L} \qquad (4)\frac{M}{Pt} \qquad (5)M - \frac{PL}{t}$		$(1) 0.60 \text{ms}^{-2}$	(2) 2 $36ms^{-2}$	(3) 5 83 ms^{-2}	$(4) 6 00 \text{ms}^{-2}$	$(5) 7 00 \text{ms}^{-2}$
10. An ice block of mass <i>M</i> is kept under the atmospheric pressure at 0°C. It is heated by a heater of power <i>P</i> for a time <i>t</i> . If the latent heat of fusion of ice is <i>L</i> , the mass of the remaining block of ice after time <i>t</i> is $(1)M - \frac{Pt}{L} \qquad (2)M + Pt + L \qquad (3)\frac{Pt}{L} \qquad (4)\frac{M}{Pt} \qquad (5)M - \frac{PL}{t}$	10		(2) 2.30113	(5) 5.051115	(+) 0.00ms	
(1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$	10.	An ice block o	of mass <i>M</i> is kept und	der the atmospher	ric pressure at 0 C. It	is heated by a heater of power P
(1) $M - \frac{Pt}{L}$ (2) $M + Pt + L$ (3) $\frac{Pt}{L}$ (4) $\frac{M}{Pt}$ (5) $M - \frac{PL}{t}$		for a time t. If	the latent heat of fus	ion of ice is L, the	e mass of the remaining	g block of ice after time t is
		$(1)M - \frac{Pt}{I}$	(2)M+Pt+L	$(3)\frac{Pt}{I}$	$(4)\frac{M}{Pt}$	$(5)M - \frac{PL}{t}$
11 A surgery is done to a patient affected by cataract. An artificial lens of fixed focal length is placed instead	11	L A surgery is de	one to a natient affect	L ted by cataract	n artificial lens of fix	red focal length is placed instead
of the eve lens of the patient in order to cure long sightedness. If the depth of the rating is 2 cm, the focal	11.	of the ave long	of the patient in or	der to ours long o	hightedness. If the der	th of the rating is 2 or the feed
langth of the artificial lans is		length of the or	tificial long is	uer to cure tong-s		in of the fethia is zelli, the focal
(1) 2 cm (2) 2.5 cm (3) 4 cm (4) 25 cm (5) 50 cm		(1) 2 cm	(2) 25 cm	$(3) 4 \mathrm{cm}$	(4) 25 cm	(5) 50 cm

- 12. When a water tap is closed, the manometer fixed to a water pipe reads 3.5×10^5 Nm⁻². The manometer reading when the water tap opened is 3×10^5 Nm⁻². The velocity of water through the pipe is
 - (1) 1ms^{-1} (2) 10ms^{-1} (3) 100ms^{-1} (4) 0.1ms^{-1} (5) 1000ms^{-1}

- 3

- 13. A stationary sound source emits a sound of frequency 600Hz from a place where the speed of sound in air is 300ms⁻¹. The frequency of the tone heard by an observer moving away from the sound source with the speed of 30ms⁻¹ is
 - (1) 600Hz (2) 605Hz (3) 660Hz (4) 720Hz (5) 540Hz
- 14. A tennis ball falls freely from the top of a tall building. The graph which correctly shows the variation of the distance S travelled by the ball with time t is.

15. The galvanometer G shows a zero deflection when the sliding key P touches the points X and Y on the potentiometer wire when the switch C is connected to A and B respectively for a particular position of P_0 on the resistor. The ratio of the electromotive forces E_1/E_2 is (X and Y are the midpoints of the particular wires)

(1) 1:2	(2) 2:3	(3) 3:5
(4) 5:6	(5) 1:1	

- P_0 400 cm Y 200 cm X K_1 0 cm E_1 A E_1 K_2 E_2 B
- 16. A train supplies coal to a power station. The functional measurements of the power station are shown in the table given below.

	Symbol	Unit
The output of the power station	Р	W
The number of trains per day	Ν	
The mass of the coal in a train	М	kg
The energy generated from 1kg coal	Е	J
The functioning time per day.	t	S

The efficiency of the power station is given by

$(1)\frac{Pt}{NME}$	$(2)\frac{PNt}{ME}$	$(3)\frac{NME}{Pt}$	$(4)\frac{NM}{PEt}$	$(5)\frac{ME}{PNt}$
	IVI E	ГІ	FLl	F IVI

AL/2016/01/E-I

2F

(2) Q

(3) R

(4) S

(1) P

- 4

Т

(5) T

[See page six

- 5

27. Four electric circuits are made by using identical cells having the same electromotive force, ideal ammeters, resistors and connecting wires with no resistance. The circuits which have the same ammeter reading with the distance (d) moved by the sliding key over the resistor are

28. The figure shows an ice layer which is formed over the water in a pond in a cold country. The point A is in the air just above the ice layer and the point B is the point of contact of water and the ice layer and the point C is at the bottom of water. The graph shows the variation of temperature (*θ*) with time (*t*) for a period of one month. The correct pairs of graphs showing the change of the temperature at the points B and C with time.

[See page seven

t

 $\theta/^{0}C$

AL/2016/01/E-I

- 29. The figure shows a laboratory experiment in which a feather falls from rest into a vertical vacuum tube of length L. The time taken by the feather to reach the bottom of the tube is T. At the time 0.50T, the distance fallen by the feather from the upper end of the tube is
 - (1) 0.13L

(4) 0.50L

30.

(3)0.38L

The figure I shows an isolated solid conducting sphere charged with +Q charge. Figure II shows an isolated system having the above same conducting sphere of charge +Q and a concentric uncharged solid spherical shell. The points (P,Q) and (R,S) are at the distance of r_1 and r_2 from the centre in the figures I and II respectively. The correct relationship between the electric field intensities $(E_p E_q, E_R, E_s)$ and the electric potentials (V_p, V_q, V_R, V_s) is

(1) $E_P = E_R \quad E_Q = E_S, \quad V_p = V_R, \quad V_Q = V_S$ (3) $E_P < E_R$ $E_O = E_S$, $V_p < V_R$, $V_O = V_S$ (5) $E_P = E_R \quad E_O < E_S, \quad V_p = V_R, \quad V_O < V_S$

(2) 0.25L

wing is h 31. A piece shown i in the d the mag of these

(2)
$$E_P = E_R$$
 $E_Q > E_S$, $V_p = V_R$, $V_Q = V_S$
(4) $E_P = E_R$ $E_Q = E_S$, $V_p > V_R$, $V_Q = V_S$

feathe

vacuum

in the figure and a current I is sent
in the figure and a current I is sent
irection shown. The magnitude of
gnetic flux density at the center O
e curves due to the current is
$$(2)\frac{\mu o I}{4r} \qquad (3)\frac{3\mu o I}{8r} \qquad (4)\frac{\mu o I}{4r} \left\{\frac{1}{2} + \frac{1}{\pi}\right\} \qquad (5)\frac{\mu o I}{4\pi r}$$

32.

 $(1)\frac{\mu oI}{8r}$

A solid cylindrical substance of length l, radius R_1 and thermal conductivity K_1 is covered by a substance of outer radius R_2 and thermal conductivity K_2 . If a solid cylindrical rod of length l and radius R is equivalent to the above combined cylinder then the thermal conductivity of the cylindrical rod is

$$(1)\frac{K_1 + K_2}{2} \qquad (2)\frac{K_1 R_1^2 + K_2 (R_2^2 - R_1^2)}{R^2} (3)\frac{K_1 R_1^2 + K_2 R_2^2}{R^2} \quad (4)\frac{K_1 K_2 (R_1^2 + R_2^2)}{R_2} \quad (5)\frac{K_1 K_2 (R_1^2 - R_2^2)}{(K_1 K_2) R^2}$$

33. A Gaussian surface which is drawn concentrically around an isolated uncharged solid spherical shell of centre A is shown by the dotted lines. The electric fluxes through the left and right hemispherical divisions are Φ_L , Φ_R respectively. The correct relationship between them in the following conditions is.

	When the point charge Q is at	When the point charge Q is at	When the point charge Q is at
	А	В	С
(1)	$\Phi_L = \Phi_R > 0$	$\Phi_L = \Phi_R > 0$	$\Phi_{\rm L} = \Phi_{\rm R} = 0$
(2)	$\Phi_L = \Phi_R > 0$	$\Phi_L < \Phi_R > 0$	$\Phi_L > \Phi_R > 0$
(3)	$\Phi_{\rm L} = \Phi_{\rm R} = 0$	$\Phi_{\rm L} > \Phi_{\rm R} > 0$	$\Phi_{\rm L} = \Phi_{\rm R} = 0$
(4)	$\Phi_L = \Phi_R > 0$	$\Phi_L < \Phi_R < 0$	$\Phi_L > \Phi_R > 0$
(5)	$\Phi_L = \Phi_R > 0$	$\Phi_L = \Phi_R > 0$	$\Phi_L > \Phi_R > 0$

- 34. Which of the following statement/s is/are correct regarding the given circuit,
 - A. When the switch is turned on, the current through the cell

is $\frac{E}{2R}$

B. At the state when the switch is closed, when the resistance R_1 increases, the charge saved in the capacitor decreases.

- C. When the switch is closed and when R_3 increases, the charge saved in the capacitor decreases.
- (1) (A) only (2) (B) only (3) (A),(B) only (4) (B),(C) only
- 35. The figure shows an integrated circuit containing NAND gates and the power source required for their functioning. The required number of input legs, output legs and the number of connection legs required to obtain an AND gate is correctly given by

			1 1
	Input	Connections	Output
(1)	1,4	2,5	6
(2)	1,2	3,4,5	6
(3)	1,2	3,4	6
(4)	13,10	12,11,9	8
(5)	1,2	3,10	8
		•	

(1) 2Ω (2) 5Ω (4) 7Ω (5) 8Ω

3Ω

6Ω

12**Ω**

 12Ω

[See page nine

3Ω

 4Ω

38. A golf ball hits the earth and the moon with same force in the same direction. The shape of the path of the golf ball is

39. A Light dependent resistor (LDR) is connected to a circuit with a resistor R and an electric cell. When the light does not fall on LDR, the resistance of it is equal to R. When the intensity of light falling on LDR increases, the correct statement is

(1) The current in R decreases.

(2) The current in LDR decreases.

(3)The power generated by the cell decreases.

(4) The potential difference across R decreases.

(5) The potential difference across LDR decreases.

В

- 9 -

40. The path of a competitor in a ski-jumping competition is shown by the dotted lines. The graph which correctly depicts the change of the speed of the competitor (V) with the horizontal distance(x) in the path from the initial point P to the point Q where he lands is. (Neglect the air resistance)

41. An electric smoking device is introduced to reduce the ill effects caused for smokers. There is a saving cell is used inside this. The smoking process is done by vaporizing a liquid with the help of a heating coil found inside the device. The special characteristics that should be possessed by this liquid for the long term use after charging this cell.

	Specific heat capacity	Latent heat of vaporization	Boiling point
(1)	High	High	High
(2)	Low	Low	Low
(3)	High	High	Low
(4)	Low	High	High
(5)	Low	Low	High

- 42. V₁ and V₂ are 3V and 1V and R₁, R₂ are 2kΩ, 1kΩ respectively in the operational amplifier circuit shown in the figure. The output voltage(V_{out}) is
 (1) 1V
 (2) 2V
 (3) -2V
 - (4) 4V (5) -4V
- 43. The stress and strain on the metal rods in an experiment are denoted in the graph where the stress axis is in the unit of 10^8 Pa and the strain axis is denoted in percentage (%). The Young's modulus of the substance of the rod.

(1) $6.0 \times 10^7 \text{Pa}$	(2) 7.5 x10 ⁸ Pa
(3) 1.5 x10 ⁹ Pa	(4) 6.0 x10 ⁹ Pa
$(5) 6.0 \times 10^{10} Pa$	

[See page eleven

- 44. When the mass and radius of the earth reduces by 1%,,
 - (1) The escape velocity reduces
 - (2) The escape velocity increases
 - (3) The acceleration due to gravity decreases
 - (4) The acceleration due to gravity increases.
 - (5) The acceleration due to gravity does not change
- 45. A system of ideal gases is compressed from a particular pressure and volume to another volume. The incorrect statement regarding this compression is
 - (1) When the volume is halved, the absolute temperature is also halved at a constant pressure.
 - (2) When the volume is halved, the pressure doubles at the isothermal process.
 - (3) When the gas is compressed in the isothermal process, the work done on the gas is equal to the heat energy released from the system.
 - (4) When the gas is compressed in adiabatic process, the work done on the gas is equal to the increase in the internal energy.
 - (5) More work has to be done on the gas in the adiabatic process than that in the isothermal process when the volume of the gas is compressed to half of its initial value.

46.

The masses of the solid spheres of radius R,2R and 3R are equal. When the sphere of radius 3R is dropped inside a liquid, it is fully immersed and in the equilibrium state. When the spheres of radius R and 2R are allowed to move inside the liquid, the sphere of radius R reaches the terminal velocity V_{o} . What is the terminal velocity attained by the sphere of radius 2R?

$$(1)\frac{8V_0}{52} \qquad (2)\frac{5V_0}{8} \qquad (3)\frac{19V_0}{26} \qquad (4)\frac{19V_0}{52} \qquad (5)\frac{9V_0}{17}$$

- 47. An opened glass vessel which was kept inside the room X is taken into the room Y after it is closed air tight. Consider the following statements,
 - (A) If the water vapour condenses on the surface of the vessel instantly, the temperature of the room Y is greater than the temperature of the room X.
 - (B) If water vapour condenses on the inner surface of the vessel after some time, the temperature of room Y is less than the temperature of the room X.
 - (C) If water vapour condenses on the inner surface of the vessel after some time, the relative humidity of the room Y is less than the relative humidity of room X, Of the above statements.
 - (1) Only (A) is correct
 - (2) Only (A),(B) are correct
 - (3) Only (B),(C) are correct
 - (4) Only (A),(C) are correct
 - (5) All (A),(B),(C) are correct

R

 S_1

 S_2

48. Consider the following statements made about the deflection of the galvanometer G.

- (A) If S_1 is closed when S_2 is closed, a deflection occurs and again comes to zero.
- (B) If S_2 is opened when S_1, S_2 are closed, a deflection occurs and again comes to zero.
- (C) The maximum deflection of the galvanometer which occurred in the above two processes are equal.

The correct statement/s is/are,

- (1) (A) only (2) (B) only (3) (A),(B) only
- (4) All (A),(B),(C) (5)None of (A),(B),(C)

49. The following four figures show a cylindrical vesssel of thin wall and a block which floats on steady water. The incorrect relationship between $h_1, h_2, h_3, h_4, h_5, h_6$ is, (the figures are not drawn to scale)

50. A bar magnet is dropped freely along the axis of a fixed rigid circular conductor which is in a horizontal plane. The graph which correctly shows the variation of acceleration (a) with time (t) in the subsequent motion is.

	Part A - Structured Essay	இப்பகுதியில் எதனையும் எழுதுதல்
	Answer all the questions on this paper itself.	ஆகாது
	Each questions carries 60 marks.	
01.	A student designed a new method to find the gravitational acceleration g using an electrical method as shown in the figure. Here the electric coil C which is used to make a temporary magnet is attached to the digital clock T. The student further explained that, when the switch is opened T starts to work and stops when the switch D is closed.	
a.	What is the reason for the selection of the steel ball by the student?	
b.	Give an advantage regarding your selection in part (a) for the above experiment.	
c.	Briefly give the steps of this experiment.	
d.	Write down the readings recorded by the student and state how they can be obtained.	
e.	What is the change which you could do to get many readings?	
f.	i) Write down the equation to find the gravitational acceleration g from your readings.	
	ii) Give the independent variable and the dependent variable.	
g.	Draw the expected straight line graph in the given axes and state how g can be found. (Clearly label the axes.)	

 i. If the expected value for g in this experiment is 10m/s, find the percentage error in this experiment i. If the experiment to find the speed of sound in air by using the resonance method is given below. i. Why sonometer wire is connected to sound box? Explain. i. Observe the above the speed of a wave through AB, draw the continuation of the wave in wire BC. i. Displacement of wire i. Displacement of wi	h. Find the gravitational acceleration if the	he gradient of the graph is 0.2016	இப்பகு எதனை எழுதுத ஆகாத
 If the expected value for g in this experiment is 10m/s, find the percentage error in this experiment If the experiment to find the speed of sound in air by using the resonance method is given below. Why sonometer wire is connected to sound box? Explain. The sonometer wire AB is 4 times the density of sonometer wire BC, other dimensions are same. The figure shows the propagation of a wave through AB, draw the continuation of the wave in wire BC Density of a sonometer wire of a wave through AB, draw the continuation of the wave in wire BC Displacement of wire The figure below shows the formation of wave in a sonometer wire of effective length 0.8m. Displacement of wire The figure below shows the formation of the wave in a sonometer wire of effective length 0.8m. Displacement of wire The figure below shows the formation of the wave in a sonometer wire of effective length 0.8m. Displacement of wire The figure below shows the formation of the wave in a sonometer wire of effective length 0.8m. Displacement of wire Displacement of wire Displacement of wire The figure below shows the formation of the wave in a sonometer wire of effective length 0.8m. Displacement of wire Displacement along wire 			
 2. The experiment to find the speed of sound in air by using the resonance method is given below. Why sonometer wire is connected to sound box? Explain. 4. Density of a sonometer wire AB is 4 times the density of sonometer wire BC, other dimensions are same. The figure shows the propagation of a wave through AB, draw the continuation of the wave in wire BC A Displacement of wire The figure below shows the formation of wave in a sonometer wire of effective length 0.8m. A Displacement of wire A Displacement along wire A Displacement along wire A Displacement along wire 	i. If the expected value for g in this expe experiment	riment is 10m/s, find the percentage error in this	
 Density of a sonometer wire AB is 4 times the density of sonometer wire BC, other dimensions are same. The figure shows the propagation of a wave through AB, draw the continuation of the wave in wire BC. Displacement of wire The figure below shows the formation of wave in a sonometer wire of effective length 0.8m. 	 The experiment to find the speed of sound i Why sonometer wire is connected to sound 	n air by using the resonance method is given below. box? Explain.	
 Density of a sonometer wire AB is 4 times the density of sonometer wire BC, other dimensions are same. The figure shows the propagation of a wave through AB, draw the continuation of the wave in wire BC Image: Control of the density of the density of sonometer wire BC, other dimensions are same. The figure below shows the formation of the density of the density			
A b c pipecenet of wire The figure below shows the formation of wave in a sonometer wire of effective length 0.8m. $ \int \int$	Density of a sonometer wire AB is 4 times th The figure shows the propagation of a wave	ne density of sonometer wire BC, other dimensions are same. through AB, draw the continuation of the wave in wire BC	
Displacement of wire The figure below shows the formation of wave in a sonometer wire of effective length 0.8m. $\int \int $	A		
Displacement of wire The figure below shows the formation of wave in a sonometer wire of effective length 0.8m. Image: Comparison of the state of the sta		\sim	
The figure below shows the formation of wave in a sonometer wire of effective length 0.8m. $\int \int \int$	Displace	ement of wire	
Displacement along wire1) Explain how the above wave is formed?	The figure below shows the formation of wave in a sonometer wire of effective length 0.8m.		
	1) Explain how the above wave is formed	Displacement along wire 1?	
	2) Find the wavelength of the above wave	using the diagram.	•
2) Find the wavelength of the above wave using the diagram.			-
2) Find the wavelength of the above wave using the diagram.			

03.	Nowadays many experiments in Physics are made quickly and accurately by using computers. And this is also welcomed by many students. A heat sensor is connected to a computer by using an interface unit during the validation of Newton's cooling law and when obtaining the specific heat capacity of a liquid from Newton's cooling curve.	இப்பகுதியி எதனையும் எழுதுதல் ஆகாது
a.	The 2 setups were arranged at the same time as shown above. Water was used in one of the setups while oil in the other. Both were heated and allowed to cool simultaneously. Both results were sent to a computer and the variation of the temperature with time was obtained in the screen of the computer. i.State Newton's law of cooling.	
	ii.What are the conditions for it to be valid?	
	iii.Why is it important to take equal volumes of water and oil?	
	in the second se	
).	Identify the liquids which are used to obtain the above curves. A:	
	B: I. What are the two important equipment which are not used when a heat sensor, interface unit and a computer are used in place of them? 1 2	
	II. State the difficulties faced by a student when	

water and oil took the times t_1 and t_2 to cool from the temperature Q_1 to Q_2 , write down an	
expression relating them.	

II. Calculate S_o, if M_w =30g, M_o =40g , Q_1 =69°C , Q_2 =29°C, t_1 =50 min, t_2 =25 min and S_w=4200Jkg⁻¹K⁻¹

.....

04. The diagram shows the circuit diagram of the electronic instruments in an electronic device used to show the temperature of the rain water.

a. Draw a circuit diagram by using the circuit symbols for the instruments A to E in the box given below.

		ஆகாது
II. 	what is the transistor configuration used here?	
	What are the advantages of this setup?	
	what are the advantages of this setup?	
 /.		
(i) 	/)Give the state of the transistor when V_{cc} =0 Volt, V_{cE} =6 Volt V_{cE} =3 Volt	
lf	the light c glows when it rains, explain briefly how the device works.	
 If	the variable resistor is corrected to Rh=0, what is the base current I_b ?	
 If Fi	the variable resistor is corrected to Rh=0, what is the base current I_b ? nd also the collector current Ic and emitter voltage V_{CE} .	
 If Fi I₀:	the variable resistor is corrected to Rh=0, what is the base current I_b ? nd also the collector current Ic and emitter voltage V_{CE} . =	
… If Fi I₀: A	the variable resistor is corrected to Rh=0, what is the base current I _b ? nd also the collector current Ic and emitter voltage V _{CE} . = I _c = V _{CE} = student suggested that if the transistor system is removed and E, C, Rh and S are connected in series the same function can be obtained.	
… If Fi I₀: A th i.S	the variable resistor is corrected to Rh=0, what is the base current I_b ? nd also the collector current Ic and emitter voltage $V_{CE.}$ =	
… If Fi I₀: A th i.S ii.	the variable resistor is corrected to Rh=0, what is the base current I_b ? nd also the collector current Ic and emitter voltage V_{CE} . =	
 If Fi I₀: A th i.S ii. su	the variable resistor is corrected to Rh=0, what is the base current I_b ? nd also the collector current Ic and emitter voltage V_{CE} . =	
 If Fi Ib: A th i.S ii. su 1)	the variable resistor is corrected to Rh=0, what is the base current I_b ? nd also the collector current Ic and emitter voltage $V_{CE.}$ =	
 If Fi Ib: A th i.S ii. su 1) 2)	the variable resistor is corrected to Rh=0, what is the base current I_b ? nd also the collector current Ic and emitter voltage V_{CE} . =	
 If Fi Ib: A th i.S ii. su 1) 2) A or	the variable resistor is corrected to Rh=0, what is the base current I_b ? and also the collector current Ic and emitter voltage V_{CE} . I_c =	
 If Fi Ib: A th i.S ii. su 1) 2) A or	the variable resistor is corrected to Rh=0, what is the base current I_b ? and also the collector current Ic and emitter voltage V_{CE} . =	
 If Fi Ib: A th i.S ii. 1) 2) A of	the variable resistor is corrected to Rh=0, what is the base current I _b ? Ind also the collector current Ic and emitter voltage V _{CE} . =	
 If Fi Ib: A th i.S ii. su 1) 2) A of	the variable resistor is corrected to Rh=0, what is the base current Ib? nd also the collector current Ic and emitter voltage VCE. = Ic= student suggested that if the transistor system is removed and E, C, Rh and S are connected in series is same function can be obtained. State the truth in his statement. State 2 disadvantages which could occur in part e)i. and prove that connecting that transistor is only litable for this circuit. simple electric circuit is formed connecting a dry cell, a bulb and a switch in a series. The switch bened state 0 and the switch closed state 1 during the wind is shown in the tables (a) and (b). Switch A Bulb	
 If Fi Ib: A th i.S 1) 2) A 0	the variable resistor is corrected to Rh=0, what is the base current I _b ? Ind also the collector current Ic and emitter voltage V _{CE} . =	
 If Ib ⁱ A th i.S ii. 1) 2) A of	the variable resistor is corrected to Rh=0, what is the base current I _b ? Ind also the collector current Ic and emitter voltage V _{CE} . =	
 If Fi Ib: A th i.S ii. su 1) 2) A OI	the variable resistor is corrected to Rh=0, what is the base current I _b ? nd also the collector current Ic and emitter voltage V _{CE} . =	
 If Fi Ib: A th i.s ii. su 1) 2) A OF I.	the variable resistor is corrected to Rh=0, what is the base current Ib? nd also the collector current Ic and emitter voltage VcE. =	
 If Fi A th i.S ii. su 1) 2) A of I.	the variable resistor is corrected to Rh=0, what is the base current Ib? nd also the collector current Ic and emitter voltage V _{CE} . =	

AL/2016/01/E-II(B)

AL/2016/01/E-II(B)

6. When two thin lenses are separated by a distance, it is not equivalent to a single thin lens. In fact, such a combination can only be equivalent to a thick lens which has a more complicated theory. In a special case when the object is placed at infinity the combination may be replaced by a single thin lens. Consider a ray passing through a lens of focal length *f*.

The incident ray OA strikes the surface of lens at height h above the optical centre. When compared with PO and PI, h is small. The angles α , β are also small.

 $(\alpha \approx \tan \alpha, \beta \approx \tan \beta)$. Now consider figure 2. The two thin lenses are placed coaxially at a separation d. The incident ray AB and the emergent ray CD intersect at E. The perpendicular from E to the pricipal axis falls at P. The equivalent lens should be placed at this position P. A ray AE, parallel to the pricipal axis will go through the equivalent lens and emerges along ECD. The angle of deviation is δ . The focal length of the equivalent lens is F = PD

- (a) Use the diagram in figure 1 to obtain the expression $\delta = \frac{h}{f}$ (b) (i) Derive expression for d in terms of d₁ and d₂
 - (ii) By using the results obtaind in (a) and (b)(i), show that $\frac{h_1}{F} = \frac{h_1}{f_1} + \frac{h_2}{f_2}$ (iii) Show that $h_2 = h_1 - \frac{dh_1}{f_1}$
 - (iv) Use the results obtained in (b)(ii) and (b)(iii). Show that if the equivalent focal length is F then $\frac{1}{F} = \frac{1}{f_1} \frac{1}{f_2} + \frac{d}{f_1 f_2}$
- (v) Find the minimum and the maximum focal lenghts of the combination for the following situations.
 - 1. $f_1 = 10.0$ cm, $f_2 = 15.0$ cm and d = 0 cm. 2. $f_1 = 10.0$ cm, $f_2 = 15.0$ cm and d = 5 cm

- (c) Concave lenses have several uses. One of it is the zoom lens arrangement in cameras. It consists of a convex lens and a concave lens. Use the results you obtained in (b)(v) to justify the purpose of the zoom lens?
- (d) (i) Another use of concave lens is the correction of short sightedness. A short sighted man can clearly see objects up to a distance of 1.5 m. Calculate the power of the lens necessary for the remedy of this defect.
 - (ii) The short sighted man takes off his glasses and observes a fixed object through them, while moving the glasses away from his eyes. He is surprised to see that at first, the object looked smaller and smaller, but then became larger and larger. Explain the reason.

- 7. A small metal ball is dropped into a cylindrical vessel containing a stationary viscous liquid. The ball is dropped from a point X which is at a height of 0.8 cm from the liquid surface.
 - (i) Find the time taken for the ball to hit the liquid surface.
 - (ii) Find the speed of the ball when it hits the liquid surface.
 - (iii) Find the terminal speed of the ball in the liquid. Use the following data.

Density of the liquid is 1000 kg m^{-3} .

Density of the metal is 10000 kg m⁻³

Co-efficient of viscosity of the liquid is 5×10^{-2} Nm⁻² s⁻¹ Radius of the metal ball is1mm.

- (iv) If the ball (in question (ii) travels in the liquid very quickly and without any energy loss), draw the v-t graph of the ball.
- (v) Suppose the ball reached its terminal speed before entering the liquid surface, draw the velocity time graph of the ball from its starting point until it reaches the bottom.

0.8 cm

8.

The above figure shows the path of a particle through six regions of uniform magnetic field where the path is either a half-circle or a quarter - circle. Upon leaving the last region, the particle travels between two charged parallel plates and deflected towards the plate of higher potential.

- (i) Identify the direction of magnetic field in each six regions.
- (ii) State whether the particle has positive charge or negative elecric charge?
- (iii) Draw the direction of electric field intensity in the parallel plate capacitor.
- (iv) Assume that all the regions have a uniform and same value of magnetic flux density B.The radius, mass, charge and the velocity of the charged particle are R, m, q and V respectively. Derive an expression for velocity V in terms of B, q, R and m.
- (v) Calculate the time taken for the above particle to travel inside the magnetic field. (Neglect the gravitational effect. Neglect the loss of kinetic energy when it travels in the free space.)

 $M = 9 \times 10^{-31} \text{ kg}, \qquad \pi = 3, \qquad q = 1.6 \times 10^{-19} \text{ C}, \qquad B = 2.7 \text{ Tesla}.$

- (vi) Calculate the velocity of the charged particle when it is entering the electric field?
- (vii) Deduce the velocity of the charged particle due to the electric field when it is leaving from the electric field.(assume $\theta = 45^{\circ}$)
- (viii)Calculate the kinetic energy of the charged particle when it is leaving from the electric field?

9. Answer either part (A) or part (B) only.

A. In a circuit which is at room temperature, a bulb P made from tungsten coil and a bulb Q made from an alloy are connected in parallel. A 240V constant power source is connected to this circuit.(Room temperature=30°C)

- (a) (i) What happens to the resistance of a bulb when it is connected to this circuit and continuously supplied with electricity?
 - (ii) When the switch is opened the current I_1 through bulb P is measured as 6A.Calculate the resistance R_1 of bulb P.

AL/2016/01/E-II(B)

- (iii) The above ammeter was connected in series with the bulb Q and its reading I_2 was found to be 4A.Calculate the resistance R_2 of the bulb Q.
- (b) After a short time interval, the ammeter was connected to the bulb P without opening the switch and the reading was $I_3=2A$. The temperature of the bulb P was then found to be 3000° C.
 - (i) Calculate the value of the resistance of the bulb P.
 - (ii) Calculate the coefficient of resistance of the tungsten coil in bulb P.
 - (iii) At the same temperature the ammeter was connected in series with bulb P and the ammeter reading I_4 was found to be 1A.Calculate the resistance of the bulb Q.
 - (iv) Calculate the coefficient of resistance of the alloy which is used to make the coil of the bulb Q.
- (c) Draw the variation of the electric current and the potential difference with time for the bulb P from the time the switch was closed.
- (d) The two bulbs P and Q glow with the same brightness at the above mentioned temperature. By using calculations, explain which bulb is more economical to use.
- B. A student has decided to design a common emitter amplifier for small-signals. The circuit he used for this purpose is shown in the diagram given below. He should select the mid-point of the load-line as the operating point. He wishes to keep the value of R_F as $1k\Omega$.

- (i) Find the value of the potential at the emitter (use $I_E = I_C$)
- (ii) Calculate the following.
 - (a) The value of R_{B} .
 - (b) The value of V_{out} .
 - (c) The value of R_c .

(iii) Now an A.C signal is applied to the input. Due to it, an input current (A.C) flows through base, as shown in figure (3).

- (a) Draw how base current (A.C + D.C) varies with time after A.C signal is applied.
- (b) Calculate the minimum and the maximum values of V_{out} . ($\beta = 100$)
- (c) Draw how V_{out} (A.C + D.C) varies with time.
- (iv) Draw how V_{out} (A.C) varies with time (Assume that the capacitor blocks D.C and allows only A.C).

10. Answer either part (A) or part (B) only.

A. The figure below shows a long composite rod consisting of two different metal rods X and Y which are joined at B. The composite rod is perfectly lagged and the temperature of its ends A and C are maintained at 100°C and 0°C respectively.

The two rods X and Y have the same length and cross-section but their thermal conductivities are K_1 and K_2 respectively ($K_1 > K_2$). Draw a graph to show the variation of temperature gradient along the composite rod from A to C when the rod is at the thermal equilibrium state. Explain the shape of your graph.

Suppose the above rod is made solely by copper and both ends of the rod are kept a temperature of 0° C and that the initial temperature distribution

along the rod is given by $\theta = (100 \text{ °C}) \text{ Sin} (\pi x/L)$, where x is measured from left and of cross - sectional area 1.0 cm².

- (a) Find the initial temperature of the mid-point of the rod.
- (b) Show the initial temperature distribution in a diagram.
- (c) What is the initial temperature at a point in the rod 2.0 cm from its left end?
- (d) Sketch the graph for the variation of temperature with distance along the rod after a very long period of time has elapsed.

- (e) Sketch curves that you think would represent the temperature distribution at intermediate times.
- (f) Calculate the followings :
 - (i) Mass of the rod.
 - (ii) Total heat energy in the rod at the beginning.
 - (iii) The average rate of heat flow from the mid point to one of its ends.
 - (iv) How much time would be required for the center of the rod to reach its final temperature? Use the following data, the density of copper = 8900 kgm⁻³, the specific heat capacity of copper = 400 Jkg⁻¹ K⁻¹. The average temperature of the rod at the beginning = 70°C. The average temperature gradient between the midpoint and one end of the rod = 200°C m⁻¹.

The thermal conductivity of copper = $400 \text{ Wm}^{-1} \text{ K}^{-1}$.

B. In dentistry, prevention of teeth decay is considered more important than the treatment.X-ray machine is used for this.It can show very small areas of decay inside the teeth. X-rays are produced by bombarding a metal target with high energy electrons. X-ray tube is surrounded by lead screening with just a small hole for the X-ray beam to emerge. This point source beam is directed through the teeth on to a piece of photographic film in a sealed plastic holder.

- (a) How are free electrons produced in an X-ray tube?
- (b) Explain the importance of using a metal with high melting point as the target material.
- (c) Why the target material is embedded in a copper block?
- (d) When a high voltage is used in the X-ray tube, what are the polarities of A and B?
- (e) (i) Calculate the kinetic energy of an electron, after accelerated by a potential difference of 90 kV. (Charge of an electron is 1.6×10^{-19} C)
 - (ii) The tube current is 5 mA. How many electrons travel across the tube each second?
 - (iii) Calculate the power of the X-raytube.
 - (iv) Calculate the maximum frequency of X-ray photons.

Plank constant $h = 6.6 \times 10^{-34} \text{ Js}$

Speed of light c = $3 \times 10^8 \text{ ms}^{-1}$

- (f) X-ray is an ionising radiation.
 - (i) What is meant by an ionising radiation?
 - (ii) Describe the effect when a living matter is exposed to an ionising radiation.
- (g) A patient recieves a full strength of the X-ray beam while the operator is 2m away from there. But after several years both of them recieved the same safe dose of radiation.Explain how this occured.
